Regeneratives Kombikraftwerk Deutschland: System Services with 100% Renewable Energies

Dr. Kurt Rohrig
Fraunhofer IWES
Paris
28.03.2014
Finished: October 2007

Objective: Demonstration of feasibility of 100% RES Energy Supply

Method: ICT linkage of wind, solar and biogas power plants to a RES VPP
Energy mix and capacity of plants correspondent to 100% scenario

Open Question: Is a 100% RES scenario technical reliable and robust?

Quality of supply? (voltage, frequency and grid stability)
Development of Generation System in Germany

Source: BMU-Leitstudie 2011 (2020/2050)
"Kombikraftwerk 2"

- **Objective**: Analysis of stability of 100% RES electricity supply in Germany
 (not considered: heat and mobile sector and economical aspects)
- **Supported**: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
- **Total Budget**: 3,053 Mio Euro
- **Support**: 1,810 Mio Euro
- **Duration**: 3 years
- **Finished**: December 2013
- **Team**: 10 partners from science, industry and service provider
- **www.kombikraftwerk.de**
Part I: Simulation of a Future Electricity Generation with RE

Development of a consistent, spatial high-resolution scenario
- energy mix
- detailed modelling of future generation park
- determination of storage capacity
- determination of generation peaks, surpluses and lacks
- where and when appear extreme situations in terms of frequency and voltage in future?

Analysis of the system concerning its stability
- amount of demand on control power and reactive power in the system
- can RES deliver all needed system services?
Modelling of spatial distribution

- High diversity of technology
 - 5 WPP-types
 - 5 PV-plant types
 - 10 bio energy types
 - Geo thermal
 - Hydro power
 - Methane power plants
 - 4 Energy storage types
 - 7 Demand scopes
 - Import and export

- considering potential areas, todays distribution and weather conditions
- unique high spatial resolution (exact location or 100m x 100m)
 - interactive scenario map
Temporal Characteristics of Energy Supply System

- Weather dependent generators
 - high resolution historic weather data from Deutscher Wetterdienst (DWD)
 - physical plant models i.e. turbine characteristics, wake effects (wind), orientation, inclination (PV)

- Demand
 - historical load series
 - standard load profiles
 - load management strategies

- Balancing system (bio energy, storage systems, methane power plants)
 - determination of capacity and site selection by cost optimizing commitment and dimensioning

> Load flow animation
Stability Analysis and Calculation

- **Congestion detection** by n-1-reliability analysis
- **Congestion management** by multitude of decentralized plants
- **Reactive power demand** by AC-load flow calculation
- **Reactive power provision** by estimation of impact of connected plants
Improvement of Frequency Characteristics

Main PRP contribution:
- PV
- Electrolysis
- Batteries

Main PRP contribution:
- Methane
- Pump storage
Control Power Provision: Field Test - Record
A safe and stable 100% RES power supply is technically feasible if renewable energy generation, storage and backup power plants with renewable gas interact intelligent.

1. System design
 - 100% RES are only feasible by the massive use of new storage technologies (e.g., electrolyzer, methanation, batteries).
 - Weather independent producers (mainly methane, biomass and hydro) must be available for safety's sake, with a total power of the order of the maximum load.
 - The DC lines of the NEP have a positive effect on network congestion and voltage stability.

2. Frequency stability
 - The rise of average control power demand is not expected due to a new type of dynamic dimensioning and can always be covered easily in the 100% RE system.
 - The reduction of rotating mass by increasing use of converter systems can be compensated by the rapid deployment of PRP due to RE facilities and storage.

3. Voltage control
 - Reactive power demand will always be covered, possibly with additional compensation systems in consumption centers.
 - Distributed generation systems can be used to compensate the inductive reactive power demand of the loads.

4. Congestion management
 - The flexible generators and storage devices were positioned and adapted to minimize grid loads. This limits the re-dispatch and grid expansion efforts.
 - Multiple (n-1) bottlenecks can be overcome by optimized re-dispatch with distributed, small plants.
Thank You for Your Attention