Risk Management of ground mounted Solar Parks during operation

DFBEW Solar Conference, 7 November 2017, Paris
Content

- Introduction
- Failure Systematics, Results of a TÜV Rheinland Study
- Risk Identification
- Risk Assessment
- Conclusion
TÜV Rheinland – Solar Energy Worldwide

Quality, safety and reliability around the world

OUR GLOBAL PV NETWORK

No 1 in PV module and component testing worldwide

35 Years experience in PV product testing

27 Years experience in Power plant inspections

6 PV test laboratories + several outdoor test fields

> 250 Experts

> 20 GW Inspected PV projects
Failure systematics in PV Systems

- Quality assurance (QA) is crucial in order to reduce levelized cost of energy, since it contributes to ensure stability for the investors and other stakeholders.
- A development of a individual risk management strategy along the lifecycle of a PV project should contain the following steps: Risk identification; Risk assessment; Risk management; Risk controlling.
TÜV Rheinland internal Study (Data 2014/ Q1. 2015)

Cause of Defects in PV Power Plants

Basis of the study:
> 100 plants (100 kWp - 30 MWp)
(Main regions: Germany, Europe, RoW)

Main findings:
- 30 % of power plants show serious and particularly serious defects (incl. safety issues) or large number of issues
- > 50 % of defects are caused by installation errors

- Systematic quality assurance is required
- Plant inspections and maintenance are important

Diagram:
- Installation faults: 55%
- Documentation & planning faults: 25%
- Miscellaneous: 9%
- Environmental influence: 5%
- Product defects: 5%
- Maintenance: 5%
TÜV Rheinland internal Study: Particularly serious Defects in PV Power Plants

"Immediate Action to prevent Plant breakdown is needed"

2012 / 2013

- Cabling: 33%
- Modules: 19%
- Connection & distribution boxes: 9%
- Mounting structure: 13%
- Inverter: 11%
- Infrastructure & environmental: 8%
- Potential equalization & grounding: 7%

2014 / Q1. 2015

- Modules: 48%
- Mounting structure: 28%
- Inverter: 16%
- Connection & distribution boxes: 13%
- Cabling: 7%
- Infrastructure & environmental: 6%
TÜV Rheinland internal Study
Failure Examples (Planning, Installation, Foundation, O&M)
Risk Identification – Technical Risk Matrix

<table>
<thead>
<tr>
<th>Modules</th>
<th>Inverter</th>
<th>Mounting structure</th>
<th>Connection & distribution boxes</th>
<th>Cabling</th>
<th>Potential equalization & grounding, LPS</th>
<th>Weather station, communication, monitoring</th>
<th>Infrastructure & environmental influence</th>
<th>Storage system</th>
<th>Miscellaneous</th>
</tr>
</thead>
</table>
| • Improper Insulation
• Incorrect cell soldering
• Undersized bypass diode
• Junction box adhesion
• Delamination
• Arcing spots on the module
• Visually detectable hot spots
• Incorrect power rating (flash test issue)
• Uncertified components or production line
• Unsuitable/ uncertified Bill of Materials (BOM)
• Unclear initial degradation | • Soiling
• Shadow diagram
• Modules mismatch
• Modules not certified
• Flash report not available or incorrect
• Special climatic conditions not considered (salt corrosion, ammonia, ...)
• Incorrect assumptions of module degradation, light induced degradation unclear
• Module quality unclear (lamination, soldering)
• Simulation parameters (low irradiance, temperature...) unclear, missing PAN files | • Module mishandling (glass breakage)
• Module mishandling (cell breakage)
• Module mishandling (defective backsheet)
• Incorrect connection of modules
• Bad wiring without fasteners | • Hotspot
• Glass breakage
• Soiling
• Shading
• Snail tracks
• Cell cracks
• PID
• Failure bypass diode and junction box
• Corrosion in the junction box
• Theft of modules
• Delamination
• Module degradation
• Slow reaction time for warranty claims, vague or inappropriate definition of procedure for warranty claims
• Spare modules no longer available, costly string reconfiguration | • Undefined product recycling procedure |

Source: Solar Bankability
Risk Identification: Soiling, Sand and Dust

Field Testing and Soiling Simulation, Thuwal/Saudi-Arabia

- High ambient dust concentration ⇒ Average daily percent decrease of - 0.5 %
- Dust storm ⇒ Max. soiling loss factor (SLF) ⇒ change per day = - 7.7 %

• Yield losses > 5 % within 1 week are possible

• Site specific cleaning concept is required
Risk Identification: Potential induced Degradation

- Performance killer number one: potential induced degradation (PID)
 (occurs in cases of high voltage, sensitive module/material combinations and damp environments – e.g. caused by condensation, high humidity)
- Reversible process through grounding or counter-potential (investments required)

Test results of PID tests of PV modules from a large-scale PV system

Knowledge of PID sensitivity of used PV modules is necessary. All material combinations of a module type must be considered to declare it PID-free!
Risk Identification: Degradation, Delamination

Degradation of Backsheet

Delamination, Browning

Significant amount of arrays (Gigawatt level) show early degradation
Risk Assessment

Introduction of Cost Priority Number (CPN in €/kWp/year)

a) Economic impact due to downtime and/or power loss (kWh to Euros)
 - Failures might cause downtime or % in power loss
 - Time is from failure to repair/substitution and should include: time to detection, response time, repair/substitution time
 - Failures at component level might affect other components (e.g. module failure might bring down the whole string)

b) Economic impact due to repair/substitution costs (Euros)
 - Cost of detection (field inspection, indoor measurements, etc)
 - Cost of transportation of component
 - Cost of labour (linked to downtime)
 - Cost of repair/substitution

Source: Solar Bankability
Risk Assessment

Ranking of Cost Priority Number CPN, Impact of Applied Mitigation Measures

Modules - top ten risks with & without mitigation measures in CPN

Examples of mitigation measures

- Vendor qualification
- Component testing (pre-tests and/or batch related)
- Design, contract and EY-prediction review
- Qualification of EPC
- Advanced Inspection
- Advanced Monitoring

To avoid or strongly mitigate risks early mitigation measures during project development and procurement phase are most effective, e.g. component tests
Risk Assessment

Quantification of the Economic Impact of Technical Risks – PID. Example: 40 MWp- Plant

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential induced degradation is a performance loss in PV modules, caused by so called stray currents</td>
<td>8 % (failure rate 40 %, 20 % power loss of affected modules)</td>
</tr>
<tr>
<td>Performance losses</td>
<td>160 kWh/kWp/a (spec. yield 2,000 kWh/kWp)</td>
</tr>
<tr>
<td></td>
<td>700,000 €/a for 40 MWp plant (0.1 €/kWh) → 16 €/kWp/a</td>
</tr>
<tr>
<td>Repair method</td>
<td>Installation of PV grounding kits</td>
</tr>
<tr>
<td>Cost to fix and repair</td>
<td>100,000 € (2,200 € per inverter x 40; incl. installation cost)</td>
</tr>
<tr>
<td></td>
<td>→ 0.12 €/kWp/a</td>
</tr>
<tr>
<td>Mitigation measure</td>
<td>Testing of the PV modules to avoid use of PID sensitive modules</td>
</tr>
<tr>
<td>Cost of mitigation measure</td>
<td>Testing of modules;</td>
</tr>
<tr>
<td></td>
<td>10,000 € for sample testing for PID resistivity</td>
</tr>
<tr>
<td></td>
<td>0.25 €/kWp</td>
</tr>
</tbody>
</table>

| ! 1.5 Mio € loss after 2 years incl. repair costs versus 10 k € mitigation costs (during procurement process) |

CPN = 16.12 €/kWp/a
Conclusion

• Technical risks can have a major impact on the total project risk rating scheme. Technical risks can be systematically organized in a risk matrix.

• Currently main risk on module level are (Installation failures, PID, degradation of back sheet, module underperformance, class breakage, delamination, arcing of BIPV, unexpected soiling)

• Mitigation measures have been identified along the value chain

• A professional risk management strategy should become integral part of each PV investment

• The risk management function should be hierarchically independent and can be provided by qualified in-house or external third party experts

• Mitigation measures, which prevent risks or allow early detection are most effective:
 a. Qualification of Vendor and EPC
 b. Component testing prior to installation
 c. Advanced monitoring system for early fault detection
Thank you for your attention

Willi Vaassen
Director of Competence Centre PV Power Plants
TÜV Rheinland Energy GmbH
Am Grauen Stein
51105 Köln
T: +49 (0)221 806 2910
willi.vaassen@de.tuv.com
www.tuv.com/solarenergy

Save the Date
All Quality Matters - PV Module Technology & Applications Forum
We are very pleased to invite you to attend the first “All Quality Matters Forum” in Europe introducing the topic PV Module Technology & Applications on
29 and 30 January 2018 at TÜV Rheinland in Cologne/Germany
www.tuv.com/pv-module-forum

Strategy to improve Quality on PV Power Plants = Risk Management