Extending the lifetime of WTG
Securing and improving the performance of WTG

Dipl.-Ing. Jürgen Holzmüller
8.2 Ingenieurbüro Holzmüller in Aurich
8.2 Group

Decentralized network of experts in renewable energies

Established for more than 20 years in the wind industry | 120 Experts | active in > 50 countries

Wind Onshore
Wind Offshore
Photovoltaics
Biogas/Biomass
Grid Integration
Condition Monitoring

27 independent 8.2 offices worldwide

8.2 Group

www.8p2.de 22.03.2016
8.2 Expertise

- In-depth knowledge of all turbine types
 - > 20 000 turbines inspected

- Due Diligence of more than 6 000 MW onshore/offshore worldwide

- International Due Diligence of more than 2.5 GW PV projects

- More than 17 years of experience in the area of CHP technology with biomass/biogas

- Design review performed for most turbines (onshore / offshore)

- Technical consulting
- Technical due diligence
- Technical inspections
- Recurrent and condition based assessments
- Rotor blade inspections
- Damage and value analysis
- Continued operation of WTG after 20 years
- Factory and warranty assessments
- Grid connection expertise
- Construction supervision
- Operation optimization
- Online und Offline Condition Monitoring
- Video endoscopy
- Design Review
The life time of the WEC has to be minimum 20 years.
Lifetime Calculation of Wind Turbines

» First long-term experience with turbines > 20 years
 • especially in Denmark and Germany

» Structural safety is designed for 20 years
 • Source: Standards and Guidelines like IEC 61400

» Germany: turbines have to be dismantled after 20 years
 • … or independent expertise and recalculation of the lifetime
Lifetime Calculation of Wind Turbines

- commissioning
- shutdown and decommissioning
- planned operating lifetime
- remaining operation lifetime
- total operating lifetime
- operation period

Individual operating lifetime
Assessment and Evaluation for Extended Operation
Issued by DIBt / BWE Association

Analytical Proof

The object of the analytical proof is to calculate the remaining life time with the aid of mathematical analysis.

Practical Proof

The complete WTG has to be assessed in a recurrent inspection by the expert with respect to the fatigue of the components and type- and series-specific risks.
Lifetime Calculation of Wind Turbines

Aging mechanisms

- fatigue
- wear
- corrosion
- extreme loads
Lifetime Calculation of Wind Turbines

» WEC as a perfect „Fatigue Maschine“

[Diagram showing Wechselbiegespannungen (Wechselbending stresses) vs. Lastwechselzahl (Number of load changes) with Wechselbiegespannungen values and different structures (Vehicular, Bridges, Helicopter, WEA ~ 2x10E8).]
Fatigue failure rotor shaft
Fatigue failure Blade root
Lifetime Calculation of Wind Turbines
Fatigue failure Bolt connection
Lifetime Calculation of Wind Turbines

Sophisticated calculations

» Calculate the WTG completely with state of the art standards like IEC 61400

» Component-specific calculation of remaining lifetime.

» High costs but reliable.
Lifetime Calculation of Wind Turbines

Input parameters for Design Calculation

- Extreme wind speed → IEC class I - III
- Mean wind speed → IEC class I - III
- Turbulence → A B C
- Period of time → ≥ 175.200 h / ≥ 20a
- Mode of operation → various load conditions
Lifetime Calculation of Wind Turbines

![Graph showing estimated and actual loads over years of operation. The graph indicates the fatigue limit and highlights the difference between estimated and actual loads.]
» Modelling of operation mode and loads

» Calculation tool for WTG type and structure

» Simulation to generate time series and the underlying loads

» Capacity of the material to withstand stresses

» Proof of structural integrity / permit to extend operation
Lifetime Calculation of Wind Turbines

Enercon E-70 / 2MW

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>Wöhler-curve</th>
<th>planned lifetime</th>
<th>Lifetime of WTG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E-70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Single WTG</td>
</tr>
<tr>
<td>Blade root</td>
<td>GFK</td>
<td>10</td>
<td>20a</td>
<td>≥ 46a</td>
</tr>
<tr>
<td>Blade bolts</td>
<td>Stahl</td>
<td>3</td>
<td>20a</td>
<td>≥ 24.3a</td>
</tr>
<tr>
<td>Hub</td>
<td>Guss</td>
<td>10</td>
<td>20a</td>
<td>≥ 3.427a</td>
</tr>
<tr>
<td>Hub bolts</td>
<td>Stahl</td>
<td>3</td>
<td>20a</td>
<td>≥ 105a</td>
</tr>
<tr>
<td>Tower top</td>
<td>Stahl</td>
<td>3</td>
<td>20a</td>
<td>≥ 105a</td>
</tr>
<tr>
<td>Tower bottom</td>
<td>Spannstahl</td>
<td>5</td>
<td>20a</td>
<td>≥ 119a</td>
</tr>
</tbody>
</table>

High interest by Operators / Project Developers / Investors
Lifetime Calculation of Wind Turbines

- 132 WTG Type NM750
- Task: Calculation of the overall lifetime
- Considering site condition
- Considering turbulence
Lifetime Calculation of Wind Turbines

Calculated minimum lifetime blade root connection:

- Min. Turbulence (WEC 29) **28.9 years** (min 28.2 years, max 29.4 years)
- Max. Turbulence (WEC 109) **26.5 years** (min 25.8 years, max 27.0 years)
- Ave. Turbulence (WEC 1-132) **27.8 years** (min 27.1 years, max 28.3 years)

The WEC component with a higher lifetime is the foundation. *(Remark: design relevant for the foundation is bending moment \(M_y\))*

Calculated minimum lifetime foundation:

- Min. Turbulence (WEC 29) **88.6 years** (min 80.4 years, max 92.9 years)
- Max. Turbulence (WEC 109) **45.6 years** (min 41.4 years, max 47.8 years)
- Ave. Turbulence (WEC 1-132) **65.4 years** (min 59.3 years, max 68.6 years)
Lifetime Calculation of Wind Turbines

Total operating lifetime ≥ **26.5 years**

(for only the weakest component of NM750 / based on site specific wind conditions)

Lifetime has been calculated based on:

- complete aeroelastic simulations
- the current standards for new designed WTGs
- common guideline IEC 61400 (turbulence)
- consideration of structural dynamics
- partly with conservative assumptions
Lifetime Calculation of Wind Turbines

WTG lifetime in years / > 30 Projects

- NTK 500
- E-82 E2
- E-30
- NM48-750
- V39
- E-33
- M570-200/40
- E-40/6.44 E1
- E-40/5.40
- M750/250
- Ventis 20/100
- E-18

22.03.2016 www.8p2.de
Analytical Proof

The object of the analytical proof is to calculate the remaining life time with the aid of mathematical analysis.

Practical Proof

The complete WTG has to be assessed in a recurrent inspection by the expert with respect to:

- fatigue of components
- type-specific risks
- series-specific risks
Lifetime Calculation of Wind Turbines

» Misalignment

Blade angle -5,2°
Lifetime Calculation of Wind Turbines

Missalignement Blade angle

Annual Yield - 12%!
Lifetime Calculation of Wind Turbines

» Missalignement Blade angle (5 years)

Lifetime of rotor shaft - 30%!
Lifetime of welding 12 years!
Summary | Securing the performance

» Each WEC has an individual life time
» Analytical methods are available to calculate life time of components
» Learn more about the weak points of turbine
» Adapt / include results in your individual maintenance plan
 ▪ Schedule repairs / critical components
» Risk based recurrent inspections
» Adjust operation mode - reduce the loads

Life Time Extension with high Reliability
Thank you for your interest.

Please contact us for further details:

8.2 Ingenieurbüro Holzmüller
Tjüchkampstraße 12 | 26605 Aurich
juergen.holzmueller@8p2.de

Office: +49 4941 – 60 444 110
Web: www.8p2.de