Differences in balancing markets between France and Germany

Market design et transition énergétique – vers la multiplication des marches? June 19th 2019

Agenda

1 Who we are: PwC

- 2 Balancing at a glance
- 3 Innovation and Balancing

PwC's international network & expertise

Differences in balancing markets between France and Germany PwC

Our Global Energy, Utilities & Resources industry network

What makes us different ...

- Our dedicated energy team is working from strategy to execution, living and breathing the sector, understanding your issues and responding to your priorities.
- Global business serving marquee clients and generating \$3,5bn in revenue in FY18
- Very close relationship with our industry networks (World Energy Council, World Economic Forum)
- 19,220 PwC Professionals are working across our four EU&R sectors
- Centers of competencies for each sector covering interdisciplinary expertise: public accountants, tax accountants, lawyers, engineers
- · Extensive thought leadership and client roundtables program
- Invest and lead in technology-enabled innovation in serving our clients with the help of our global alliances with SAP, Workday, Salesforce, Microsoft, Oracle, Guidewire, HPE, Google and GE Digital
- Unique learning & education program for our network through annual Global EU&R Conference 2019

2

Balancing at a glance

Introduction to balancing

Since electricity is not storable in a large-scale today, the electricity grid, i.e. feed-in and feed-out, must be balanced at all times. TSOs manage the Balancing process to ensure that generation equals consumption considering the European Grid Frequency at 50Hz.

In case of an **imbalance**, **flexibility** in production and consumption is required to manage imbalances.

Flexibility providers

Generation side: Power plants considering their technical capabilities

Demand side: E.g. industries, end-users through aggregators (responsible of balancing)

Valuable products of flexibility

Capacity: Remuneration (€/MW) for an activable power capacity during a period

Energy: Remuneration (€/MWh) after an effective power capacity during a period

The ongoing transformation of the European energy system calls for the integration of the balancing markets

The transformation of the European energy market asks for harmonised real time market for balancing products!

- Integration of more renewables
- Development of flexibility
- Management of system security

2017 Guideline on electricity Balancing Integration of balancing energy markets in Europe until 2025 at least:

- Effective competition
- Non-discrimination
- Transparency
- European Integration
- Security of supply

Overview of European harmonised or being harmonised balancing mechanisms

Quick and additional reserves

French and German balancing products differ at some points due to ENTSO-E study

			F (Primary	CR v Reserve)	aF (Seconda)	RR ry Reserve)	mFRR (Tertiary Reserve)	
© •	Procurement scheme	Capacity	Market only	Mandatory only	Market only	Hybrid	Market only	Market only
		Energy	-	-	Market only	Mandatory only	Market only	Market only
	Activation rule for energy -		-	Merit Order	Pro Rata (Parallel Activation)	Merit Order	Merit Order	
(\mathbf{P})	Activation time		x < 30s	x < 30s	90s < x ≤ 5min	5min < x ≤ 15min	5min < x ≤ 15min	5min < x ≤ 15min
	Product Resolution in MW	Capacity	x ≥ 1 MW	x ≤ 1 MW	1 MW < x ≤ 5 MW	x ≤ 1 MW	1 MW < x ≤ 5 MW	5 MW < x ≤ 10 MW
		Energy	No minimum bid size	No minimum bid size	1 MW < x ≤ 5 MW	No minimum bid size	1 MW < x ≤ 5 MW	x ≤ 1 MW
	Product resolution in time	Capacity	Week(s)	Week(s)	Hour(s)	Hour(s)	Hour(s)	Week(s)
		Energy	Week(s)	30 minutes	Hour or blocks	30 minutes	Hour or blocks	30 minutes
	Distance to real time of reserve products auctions	Capacity	Day(s)	Week(s)	Day(s)	Day(s)	Day(s)	Year or more
		Energy	-	x ≤ h-1	x ≤ 1 minute	15 minutes $< x \le h-1$	5 minutes < x \leq 15 minutes	15 minutes < $x \le h-1$
	Providers		Generators, Load, Pump, Storages*, Batteries	Generators, Load, Pump, Storages*, Batteries	Generators, Load, Pump, Storage*	Generators, Pump, Storage*	Generators, Load, Pump, Storage*	Generators, Load, Pump, Storage*
<u>~</u>	Need for symmetrical product	Capacity	Yes	No	No	No	No	No
15	Settlement rule	Capacity	Pay as bid	Pay as bid	Pay as bid	Regulated price	Pay as bid	Marginal price
		Energy	Pay as bid	Regulated price	Pay as bid	N/A	Pay as bid	Pay as bid
	Cost recovery scheme	Capacity	100% Grid Users (tariffs)	100% Grid Users (tariffs)	100% Grid Users (tariffs)	100% Grid Users (tariffs)	100% Grid Users (tariffs)	100% Grid Users (tariffs)
		Energy	N/A	100 % BRP	100 % BRP	100 % BRP	100 % BRP	100 % BRP
\bigtriangledown	Free bids allowed		No	Yes	No	Yes	No	Yes
0	Activations possible for other purposes than balancing?	Energy	-	-	No	No	No	Yes

Differences in balancing markets between France and Germany PwC

Source: ENTSO-E survey 2018; published in march 2019 *Storage, e.g. BEV batteries, small and large-scale batteries

Innovation and Balancing

Increasing decentralized generation by RES and conventional phase out lead to need for new flexible and other new technologies for providing balancing power

Differences in balancing markets between France and Germany

The energy system on both sides – producer and consumer – will change

PastPower generation
landscapeFew centralized power plantsConsumer behaviourPassive consumptionPower flowTop-down
One-directionalNetwork landscapeFew network pointsNetwork system
OperationPredictable, demand based

Present and future

High and further increasing number of decentralized power plants

Active prosumer

Top-down and bottom-up Bi-directional

High number of localized network stations

Volatile (weather dependent)

Differences in balancing markets between France and Germany PwC

Regulations drive the electrification of drivetrains – globally. Admissions of electric vehicles will ramp up in all sectors in the coming years

BEV – Battery electric vehicle; PHEV – plug-in-hybrid electric vehicle Source: ICCT 2019 PwC (Germany), target of the French multiannual energy program (France) Differences in balancing markets between France and Germany

The growing number of BEVs show a high potential for providing flexibility. First pilot projects have been launched

Current pilot project idea

- The Mobility House
 ENERVIE
- Amprion
- Nissan

Who?

Where?

What?

- Hagen, Germany
- Since October 2018
 - FCR supply

Differences in balancing markets between France and Germany PwC

	Assumptions by PwC									
	CAPEX			OPEX			Revenue FCR			
	ICE (Nissan QASHQAI)	Euro	30.170	Maintenance ICE/BEV	Euro/a	500/350	Average price FCR	Euro/MW/	1.300	
	BEV (Nissan LEAF)	Euro	36.800	Insurance ICE/BEV	Euro/a	400/350	(June 2019) FCR capacity of BEV	week		
111÷.	Charge point without/with FCR	Euro	1.000/3.000	Distance per year	km	15.600		kW	10	
+ ī ♪				(60km/d, 260 d/a)			FCR remuneration	Euro/a	676	
	Charge point installation	Euro 4	450	Consumption ICE	l/100km	5,7	Availability for supplying FCR	%	75	
				Consumption BEV	kWh/100km	19,55				
	Duration of life	а	6	Gasoil price	€/	1 46				
	Interest rate	%	6		Ch	1,10				
				Electricity price	€/kWh	0,28				

Annualised costs (yearly) without consideration of any subsidies

		ICE BEV without FCF	R BEV with FCR		
Annual Revenue	Euro	0) 507 -	Ioday's high price	
Annual Costs	Euro	8.434 9.333	<mark>9.739</mark>	BEV/2 and ICE2	
Vehicle (incl. Battery for BEV)*	Euro	6.135 7.484	7.484	DEVS and ICES	
Charging Point*	Euro	0 203	3 610		
Charging Point Installation*	Euro	0 92	2 92	revenues	
Consumption	Euro	1.298 854	4 854	Vet decreasing	
Maintenance	Euro	500 350) 350	nurchase costs for	
Insurance	Euro	400 350) 350	BEVs in the future	
Тах	Euro	100 () 0	will improve the	
Annual costs, yearly	Euro	8.434 9.333	<mark>9.232</mark>	FCR business case	
Additional yearly costs in comparison to ICE	Euro	899	9 799		

* Annualised investment costs (interest rate: 6%; duration 6 years)

Enera demonstrates the change of a static, centralised energy system to a dynamic, decentralised one by combining digitalization and flexibility options on a local scale (1/2)

Current pilot project idea

- Who?
- 32 consortium partners
- > 75 Partners

FWF AG

- Where?
- Lower Saxony: Emden, Aurich, Friesland, Wittmund
- 20 kV, medium-voltage
- 2.655 km²
- Population of ± 390.000
- ± 200.000 households
- 2 GW of RES generation capacity
- 1,5 GW Wind capacity
- Production/consumption
 coefficient: 230%
- When? 01.01.2017 to 31.12.2020
- What?
- Local smart energy system
- Project value: 155 mio. €
- SINTEG funding: 51 mio. €

Source: enera

Differences in balancing markets between France and Germany PwC

The aim of Enera is to optimize the interaction of grid, market and data

Enera demonstrates the change of a static, centralised energy system to a dynamic, decentralised one by combining digitalization and flexibility options on a local scale (2/2)

ENERA - An innovative solution of market-based congestion management by striving to enable: Demand side management / **Transparency and data** flexibility market security **Decentralisation** Creating an ecosystem Shifting the network Smart meter and focus from of active participation mobile app enable of consumers in transmission to users to monitor and distribution level. balancing the network optimized their based on "smart grid" consumption behaviour infrastructure. through secure data aquisition, processing and visualization.

Any questions?

> Thank you for your attention.

Your contact persons

Pascale Jean Partner Energy & Utilities PwC France

63 rue de Villiers 92208 Neuilly-sur-Seine France Tel.: +33 1 56 57 11 59

Mobil.: +33 6 74 44 79 11 pascale.jean@pwc.com

Maik Sinagowitz Prokurist & Senior Manager Dipl.-Wirtsch.-Ing. Moskauer Straße 19 40227 Düsseldorf Germany Tel.: +49 211 981 2521 Mobil.: +49 170 722 6456 maik.sinagowitz@de.pwc.com

pwc.de

© 2019 PricewaterhouseCoopers GmbH Wirtschaftsprüfungsgesellschaft.

All rights reserved. In this document, "PwC" refers to PricewaterhouseCoopers GmbH Wirtschaftsprüfungsgesellschaft, which is a member firm of PricewaterhouseCoopers International Limited (PwCIL). Each member firm of PwCIL is a separate and independent legal entity.