Energy-Climate Perspectives in France 2035-2050

David MARCHAL
Deputy Director Sustainable Productions and Energies
ADEME

OFATE DFB EW - Berlin - Energy transition funding in France and Germany
ADEME at a glance

- **Public establishment** under the joint authority of the Ministries in charge of:
 - Ecological And Solidary Conversion
 - Research

- **Areas of activity:**
 - Waste management
 - Transport & mobility
 - Sustainable city
 - Energy & Climate
 - Energy efficiency

- **Budget:**
 - 570 M€, in 2018
 - 3 300 M€, for the « Investments for the future »

- **ADEME’s missions:**
 - **Forerunner** for the energy & environmental transition
 - **Generalizer** of good practices
 - **Expert** of the energy & environmental transition

- **How many, where?**
 - Around 900 employees
 - Head offices (Angers, Paris, Sophia Antipolis)
 - 17 regional Directorates
ADEME’s Energy climate scenarios:

- An ambitious and realistic multi energy scénario
- CO₂ / 4 by 2050
- Energy consumption / 2 by 2050

2012, updated in 2017

Other more technical and exploratory studies

- 100% REN Power Mix

- 100% REN gaz Mix:
Energy Prospective 2035 – 2050 at a glance

Final energy demand MToe

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>149</td>
<td>105</td>
<td>82</td>
</tr>
</tbody>
</table>

Percentage of energy demand decrease: at 2035 (red), at 2050 (green)

Share of renewable energy in energy mix (3 options)

2010: 10%
2035: 34% ↓ 41%
2050: 46% ↓ 69%

Percentage of renewable energy in the mix for each option

GHG CO₂ eq. emissions

<table>
<thead>
<tr>
<th>Year</th>
<th>1990</th>
<th>2035</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>529</td>
<td>260</td>
<td>158 - 146</td>
</tr>
</tbody>
</table>

Percentage of CO₂ emissions reduction respectively to 1990: in 2035 (red), in 2050 (green)
Energy demand evolution by 2035 and 2050

- **Building**: 500 000 thermal refurbishing/year to 2035 then 750 000/year in residential. Best heating equipment and appliances,

- **Transport**: performant thermal motorization and penetration of alternative motorizations. Mobility services, collective transports, lower mobility

- **Industry**: growth of global production, gains in energy efficiency and recycling

- **Agriculture**: avoiding agriculture losses, agro-ecology, after 2030 evolution of alimentation diet
Energy demand evolution by 2035 and 2050

• No more petroleum nor coal by 2050

• **Electricity**: relative share growth from 25% to 40%, but absolute value decrease

• **District heating network**: twice more
3 options envisaged for electricity mix
Between 46% and 69% of REn in the production
Ambitious but realistic development trajectories
Energy vectors and renewable

- REn share depends on vectors
- Electric REn potential to make other vectors « greener »
Lessons to be drawn

• **Significant efforts must be deployed in the short and medium term, up to 2035:**

 – Need to boost the existing buildings refurbishment

 – Rapidly and broadly reduce the number of fossil fuel internal combustion vehicles in use

• **Equilibrium and convergence of energy vectors will be of major importance:**

 – Biomass resources uses: between heat, biogas....

 – New scenarios to explore

• **New levers must be explored to reach a carbon neutral society in the longer term**
The growth impacts of the energy transition outweigh the recessionary effects:

- **GDP**: More than + 3.6% by 2050
- **Employment**: More than + 830,000 employees
- **Disposable household income growth**