Wind turbines dismantling and recycling

Scenarios and perspectives for a circular economy in the wind energy sector in France
Context (1)

- **Multiannual energy program (French “PPE”)**
 - Current capacity (end of 2019): 16,5 GW onshore
 - 2023: 24,1 GW onshore // 2,4 GW offshore
 - 2028: 33,2-34,7 GW // 5,2-6,2 GW offshore
 - Recycling WT materials mandatory by 2023
Growing volumes of Feed-In Tariffs contracts coming to an end from 2020

Many reports about dismantling, recycling and repowering of wind turbines that deals with circular economy

- ADEME, 2015 (France): Opportunities of circular economy in the wind energy sector
- CGDD, 2019 (France): Circular economy in the wind energy sector in France
- UBA 2019, (Germany): Development of a concept and measures for an efficient decommissioning of wind turbines
2 kinds of circular economy

Temporal
Product and lifecycle

Geographical
Territory and organisation

3 kinds of flows

Materials

Services
(market players and skills)

Logistic
(transport)

2 issues

Flows
(new WT)

Stocks
(installed WT)
Main goal: sustainable and appropriate waste management and valuation

Regulatory framework

Mandatory to dismantle and evacuate waste from wind installations
(with appropriate financial guarantees; currently evolving)

Waste management hierarchy

MOST PREFERRED
PREVENTION
REDUCTION
RECYCLING
RECOVERY
DISPOSAL

LEAST PREFERRED

Technical (recycling solutions)

Economic (economic model and sale opportunities to be found)

Structuration of a collecting and recycling industry
Circular economy issues for the wind energy sector

<table>
<thead>
<tr>
<th></th>
<th>Eco-design</th>
<th>Sustainable supply</th>
<th>Improve lifetime</th>
<th>Waste recycling and valuation</th>
<th>Industrial and territorial ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td></td>
<td>Optimising logistics and services flows</td>
<td></td>
<td></td>
<td>Creating local industrial ecosystems</td>
</tr>
<tr>
<td>(installed WT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-term</td>
<td>Improve material efficiency and recyclability (with information and labelling on composition)</td>
<td>Providing for sustainability for rare materials consumption</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(WT to be installed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term</td>
<td></td>
<td>Optimising end-of-life scenarios</td>
<td></td>
<td>Creating specific materials treatment and recycling industries</td>
<td>Treating materials outflows in local industrial ecosystems</td>
</tr>
<tr>
<td>(decomm. of installed WT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Levers:

- Supporting eco-design and innovation
- Confirming opportunities relevance with environmental, strategic and economic studies
- Promoting opportunities development
- Finding synergies between WT manufacturers and waste treatment / recycling stakeholders
- Including circular economy and recycling criteria in regulatory frameworks and national support systems
Wind turbine materials and main issues

- **Composites**
 - Several recycling solutions exist: solvolysis (CF) / pyrolysis (CF) / grinding and reincorporating (GF) / pulsed electric current (CF) / eco-designed resins (GF / CF)
 - Wind energy: 7% of composites market share in France => synergies to be found, especially with boating sector
 - For GF, there is a potential market for construction and building field (innovative materials)
 - No viable economic models at the moment, especially for GF blades
 - Energy valuation is also possible (solid recovered fuel, SRF)
 - For SRF manufacturing, stakeholders already exist
 - Uniformity of blades composition is a strength (compared to other SRF)
 - For GF, silica is also used for clinker
 - But as a part of it is in the smoke, there is a filtration issue

- **Steel, copper, aluminium**
 - Good added value, even for recycled materials. Market already exists.

- **Concrete**
 - In 2030, concrete outflows: ~3-4% of annual recycled concrete in France (compared to 2017 level)
 - Logistic issue as it has a low added-value and high transportation cost: need for local stakeholders
 - Need for better recycling solutions (increased acceptance and reincorporation rates)
Attention points

Margin is too low for investors and industrial stakeholders:
- A market has to be created
- A better cost allocation is needed
- More responsibility for material management (polluter-pays principle)
- Organisation requirements

1. Attention points

Margins is too low for investors and industrial stakeholders:
- A market has to be created
- A better cost allocation is needed
- More responsibility for material management (polluter-pays principle)
- Organisation requirements

2. Uncertainties and risks due to price volatility of recycled materials (depends on offer and demand)

3. Perspective of increasing costs due to landfilling ban and rising SRF offer for cement plants that will increase prices

Dismantling and waste valorisation require local solutions for collecting and sorting as transportation costs are high.

- Need for clarification of practises:
 - Dismantling perimeter (incl. foundations & related works)
 - Methods and protocols
 - Guidelines, safety and technical standards and certifications for WT dismantling, grounding and waste management (incl. recycling and potential landfilling)
Conclusions

- **Product circularity**: Need for emergence of industrial and economic stakeholders on the recycling value chain
- **Territorial circularity**: Important logistics costs may benefit local stakeholders if local platforms and observatories centralize know-how and information on flows and opportunities (especially for concrete and blades) => need for emergence of such platforms

Challenges

- Measures at a European scale
- Storage terms
- Individual responsibility as blades have a long lifespan
- Synergies with other composite materials
- Optimising specific materials management
- Optimising economic conditions and organisation

Data to be collected and observatories

Investments needed, with innovative technical and organisational solutions (incl. synergies on the value chain and with other sectors)

Logistics and material flows, specific to each region

Guarantee environmental standards and create appropriate market conditions

Visibility

Regulatory framework

Structuration

Iterative approach
Thank you for your attention!

Sébastien BILLEAU - ADEME / DBER / SRER
sebastien.billeau@ademe.fr