Landwirtschaftliche Rentenbank

The Future of Biogas and Biomethane

Paris, Sept. 21, 2017
Table of Contents

1. Landwirtschaftliche Rentenbank
2. Perspectives for Biogas
3. Promotional Lending
4. Conclusion and Prospects
1. Landwirtschaftliche Rentenbank
Rentenbank at a Glance

- Corporate organization: Public law institution
- Established: May 11, 1949
- Located: Frankfurt am Main
- Corporate objectives: Promotion of the agricultural sector and rural areas
- Refinancing institution
- Total assets 2016: EUR 86.3 billion
- Employees: 282
- Promotional Lending 2016: EUR 7.69 billion
A Time-Honored Business Model

Special Promotional Loans: no end-borrower risk through on-lending

- Rentenbank *raises funds* in capital markets

- Local banks grant loans to the end-borrower. These loans are refinanced by Rentenbank. Having a collateralized claim against the local bank, Rentenbank *does not bear any end-borrower risk*

- Local banks *assess and bear the credit risk* for an adequate margin but do not *bear any liquidity risk*

Rentenbank provides *long-term credit* for agriculture and rural areas. The application process ensures that promotional rates *reach the end-borrower*
2. Perspectives for Biogas
Importance of Biogas in Germany

Flexible, storable and environmentally beneficial

- About **9000 biogas plants** in Germany with a total installed electric output of **more than 4.1 GW** (about **4,6% of current consumption**)

- Germany is the biggest biogas industry in the world

- Biogas is not only important for Germany’s power generation, but also makes a significant contribution to a shift to renewables in the heating sector

*1: Umweltbundesamt auf Basis AGEE Stat., 02/2017
Importance of Biogas in Germany

- An average biogas plant with an electric capacity of 190 kW provides 450 households with electricity and 100 households with heat

- Different types of biogas plants
 - Biogas from renewable resources
 - Small manure plants
 - Waste fermentation installations

- Common feedstock in German biogas plants
 - By weight: about 48% energy crops
 - By energy output: about 77% energy crops

- In 2015 about 2.2 million hectares for cultivation of energy crops

- Most used energy crop for bioenergy production is maize (73% in 2015) → at odds with social interest

- Success of biogas plant is highly dependant on commodity prices since feed-in-tariffs are fix
Effects of Renewable Energy Act and its reforms

Number of Biogas Plants and Total Installed Electric Output*2

*2: Fachverband Biogas e.V
Importance of Biogas in Germany

- Different operator models:
 - Typically operated by farmers
 - Public institution
 - Institutional investors

- Advantages of biogas:
 - Power generation from biogas plants is controllable and can be demand-oriented (in contrast to photovoltaic and wind power)
 - Great variability in the utilized substrates
 - Substitution of synthetic fertilizers
 - Nutrient recycling
 → Storable and flexible energy source

- Disadvantages of biogas:
 - High discrepancies in profits and losses of biogas plants
 - Higher electricity generation costs
EEG 2017

Chances by follow-up investments for established biogas plants

- As a result of the EEG 2014 only 23 MW of biogas power were newly installed in 2015 – the lowest growth rate since the existence of the EEG in 2000

- In 2015 only 150 new biogas plants were completed, most were small manure plants with a capacity under 75 kW

- The EEG 2017 determines that all bioenergy power plants > 150 kW are required to participate in tenders – since maximum bid limits for new biogas plants are very strict, there may be not so many investments in new biogas plants

- For existing installations there are chances by investing in
 - CHP units and gas storage and therefore the transition to a flexible electricity generation (premium payment for flexibility, additional revenues from EPEX Spot SE)
 - Storage capacities for digestives
 - Microgas networks (additional premium payment for direct sales)
 - Biomethane production
Levelized Costs of Electricity (LCOE) *3

Actual and estimated future costs

electricity generation costs (min/max)

0 5 10 15 20 25 30
Euro cents/kWh

onshore wind energy offshore wind energy photovoltaics biogas lignite stone coal gas (CCPP)

BMWi, Marktanalyse 2016 – Stand und Entwicklung der weltweiten Erneuerbare-Energien-Märkte, Dec 2016
Fraunhofer ISE, Stromgestehungskosten Erneuerbare Energien, Nov 2013
www.forschungsradar.de, Studienvergleich: Stromgestehungskosten verschiedener Erzeugungstechnologien, Sep 2014

CCPP: Combined Cycle Power Plant (gas)
Levelized Costs of Electricity

- Levelized costs of electricity for renewable energy sources continue decreasing whereas costs for lignite, stone coal and CCPP will rise in the long term

- Electricity generation costs for biogas are higher than for other renewable energy sources

- Disadvantages of wind energy and photovoltaic:
 - Weather dependent and fluctuating power generation → logistical challenges for the grid
 - Not storable or external storage system needed

- Beneficial side-effects of biogas:
 - Avoidance of methane emissions
 - Substitution of synthetic fertilizers and therefore conservation of fossil resources
 - Decentral energy production / rural development

Key position of biogas for climate-friendly transformation of the energy supply system
Biogas projects are characterised by high specific costs

- High portion of costs are feedstock and labour costs → decide on success or failure

High costs of knowledge

- In contrast to photovoltaic and wind energy there is a professional expert needed for the operation and maintenance of the plant

- Different requirements respective to the abundance of resources and technical facilities necessitate special knowledge regarding the valuation of financing options
3. Promotional Lending
Promotional Lending

- Agriculture
 - Growth
 - Sustainability
 - Production Maintenance
 - Liquidity Assistance

- Aquaculture and Fisheries
 - Growth
 - Sustainability
 - Aquaculture Inputs

- Agribusiness
 - Growth and Competition
 - Environmental and Consumer Protection
 - Agribusiness Inputs

- Renewable Energy
 - Rural Energy

- Rural Development
 - Rural Living
 - Rural Infrastructure

Innovations

LR-TOP
LR-BASIC
Promotion of Biogas Plants

Promotional Loans for Investments and Commodities

- Long-term loans, usually 15-20 years
- Fixed interest rates up to 10 years
- TOP interest rates for investments in biogas plants (favorable interest rates)
- Lean and simple granting (same-day processing of loan applications)
- Risk-adjusted interest system
Reflection of current market situation

- Rarely investments in new installations in the past years → high portion of investments in making existing installations more flexible
- Investment decisions highly dependent on the government’s funding
4. Conclusion and Prospects
Conclusion and Prospects

- Biogas makes an important contribution to the energy transition, alongside its promising heating potential and other ecological benefits

- Challenges for biogas production despite its mentioned advantages
 - Shifts in public policy and issues over public acceptance
 - Biogas will remain one of the most expensive renewable sources of power
 - Difficult transportability of manure

- Future of the biogas sector
 - Research and development: innovative technologies needed for maximising heat potential and making manure storable and transportable
 - Public discussion: accentuation of valuableness of biogas for Germany’s future power system
 - Political decisions: flexibility that biomass can provide, should be rewarded
Thank you for your attention!

CONTACT
Landwirtschaftliche Rentenbank
Andreas Euler
Hochstraße 2
D-60313 Frankfurt am Main
phone: +49-69-2107-475
www.rentenbank.de
Questions

How can biogas ever get competitive?

How can the biogas sector be expanded in a sustainable way?

Which regulatory arrangements and financial incentives are needed to make biogas production more profitable?
Biogas from Renewable Resources

- In 2015 about 2,2 million hectares for cultivation of energy crops
- Most used energy crop for bioenergy production is maize (73% in 2015) → at odds with social interest
- Feedstock in german biogas plants
 - By weight: about 48% energy crops
 - By energy output: about 77% energy crops
- Success of biogas plant is highly dependant on commodity prices since feed-in-tariffs are fix
- Biogas plants will only be granted funding for half of the hours of a year – as an adjustment there will be premium payment for flexibility
- Feed-in tariffs for plants up to 150 kW: 13,32 ct/kWh (Degression = 0,5%/half-year)
- Maximum bid limits for plants > 150 kW (Degression = 1%/year):
 - Existing plants: 16,9 ct/kWh, 10 years of remuneration
 - New plants: 14,88 ct/kWh, 20 years of remuneration
In Germany about 400 biogas plants exclusively use waste

- At least 90% of the following substrates have to be used:
 - Garden and park waste
 - Household bio-waste
 - Market waste (e.g. expired food)

The remaining 10% are arbitrary

- Unfortunately only certain waste materials are accepted in this class

- Feed-in tariffs (degression = 0.5%/half-year):
 - Up to 500 kW: 14.88 ct/kWh
 - > 500 kW – 1 MW: 13.05 ct/kWh

- For plants that do not participate in direct marketing: degression of 0.2 ct/kWh
About 660 small manure installations in Germany

Use of 80% manure on an annual average (poultry manure is not creditable to the 80%); the remaining 20% are arbitrary

Maximum admissible installed electric output: 75 kW

Feed-in tariffs: 23.14 ct/kWh (degression = 0.5%/half-year)

For plants that do not participate in direct marketing: degression of 0.2 ct/kWh
Advantages and disadvantages of using manure and waste for biogas plants

Ecology versus economy

- Advantages:
 - No competition with land used for agricultural goods
 - Reduction of greenhouse gas emissions
 - Reduction of odors
 - Production of high-quality fertilizer
 - Reduction of chemical fertilizer

- Disadvantages:
 - Liquid manure has high amounts of water with little energy density and is barely transportable
 - Less output than biogas plants using energy crops with similar installation costs
Requirements for using manure and waste economically

- Beneficial for plants with animal husbandry and storage capacities

- For exclusive biogas plants transportation costs are restrictive → innovations in drying and pelletizing

- Regulatory framework and financial incentives

- Rewarding the contribution to closed nutrient cycles and replacing fossil fuel based mineral fertilizers by using the digestate as a fertilizer could make biogas production more profitable